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SUMMARY

In this paper we study the stability and approximability of the P1–P0 element (continuous piecewise
linear for the velocity and piecewise constant for the pressure on triangles) for Stokes equations. Although
this element is unstable for all meshes, it provides optimal approximations for the velocity and the pressure
in many cases. We establish a relation between the stabilities of the Q1–P0 element (bilinear/constant
on quadrilaterals) and the P1–P0 element. We apply many stability results on the Q1–P0 element to the
analysis of the P1–P0 element. We prove that the element has the optimal order of approximations for
the velocity and the pressure on a variety of mesh families.

As a byproduct, we also obtain a basis of divergence-free piecewise linear functions on a mesh family
on squares. Numerical tests are provided to support the theory and to show the efficiency of the newly
discovered, truly divergence-free, P1 finite element spaces in computation. Copyright q 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The P1–P0 element, continuous piecewise linear approximation for the velocity and piecewise
constant approximation for the pressure, is probably the simplest finite element which could
preserve the incompressibility condition of incompressible fluids (see [1–9] for more information
on divergence-free elements for Stokes). Unfortunately, the element is unstable for any mesh since
the dimension of the discrete velocity space is always less than that of the pressure space (with
Dirichlet boundary condition). However, this element provides optimal approximations for both
the velocity and the pressure on many mesh families. Some discussions on this element can be
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498 J. QIN AND S. ZHANG

found in [4, 10–12] and references therein. In this paper, we concentrate on the triangular meshes
made by crisscross-refinements of quadrilateral meshes, i.e. dividing each quadrilateral into four
subtriangles by the two diagonals.

To make the notation in introduction clear, we define some notations first. Let Vh ⊂H1(�)

and Ph ⊂ L2
0(�) := L2(�)/C denote the mixed finite element spaces of velocity and pressure,

respectively; they are defined on a triangulation Th of a polygonal domain �. We solve the finite
element approximation (uh, ph) satisfying the mixed formulation of Stokes equations

a(uh, v) − b(v, ph) = (f, v) ∀v∈Vh

b(uh, q) = 0 ∀q ∈ Ph
(1)

Here, a(u, v) := ∫
� ∇u : ∇v, b(v, q) := ∫

� q div v, and (f, v) := ∫
� f · v for all u, v∈Vh and

q ∈ Ph . For convenience, we define Nh ={q ∈ Ph |
∫
� q div v= 0, ∀v∈Vh} and the reduced pressure

space Mh as the L2-orthogonal complement of Nh in Ph . The non-constant functions of Nh are
called spurious pressure modes. The element Vh × Ph is said to be stable if the inf–sup constant

�h(Vh, Ph) := inf
0 �=p∈Ph

sup
0 �=v∈Vh

∫
� p div v

‖v‖1,�‖p‖0,�
is bounded below by a positive number independent of h, see [13, 14]. Here, Ph is assumed as a
subset of L2

0, i.e.
∫
� q = 0 for all q ∈ Ph . If Vh × Ph is not stable but Vh × Mh is, then the element

Vh × Ph is said to be reduced-stable. Accordingly, the inf–sup constant �h(Vh, Mh) is called the
reduced inf–sup constant of the element Vh × Ph .

In this paper, we show a close relationship between the stabilities of the Q1–P0 element
(bilinear/constant quadrilateral element) and the P1–P0 element. That is, the reduced stability of
the Q1–P0 element on a family of quadrilateral meshes is equivalent to that for P1–P0 on the
crisscross-refinement meshes of the quadrilateral family. Therefore, many results on the stability
of the Q1–P0 element can be applied to P1–P0. For example, the reduced inf–sup constant of
the Q1–P0 element is Ch on the square meshes of the unit square, therefore, the reduced inf–sup
constant of the P1–P0 element on the crisscross meshes of the unit square is Ch too. There are
many results on the stability and approximability of the Q1–P0 element (see [4, 5, 15–24].)

If a mesh family is stable for the Q1–P0 element, then the crisscross-refinement of the mesh
family is reduced-stable for P1–P0. Then, we show that the P1–P0 element has optimal approxi-
mations for the velocity and pressure. There are a wide range of stable families for the quadrilateral
element Q1–P0, see [25]. Therefore, the numerical solutions of the element P1–P0 are of the
optimal order on the crisscross-refinements of all these families. The performance of the P1–P0
element on some general mesh families is also discussed in this paper.

As a byproduct of our analysis, we explicitly display a basis of all divergence-free continuous
piecewise linear polynomials defined on the crisscross grids of the unit square (cf. Figure 1(a)).
Each basis function has a small support formed by a few triangles. Moreover, we show that the
space of these divergence-free functions has the optimal approximation property. The analysis is
supported by a numerical test. We found that the only other study on divergence-free P1 elements
is on the finite element with polar coordinates [26].

We need to point out that the C0 divergence-free P1 vector space is the curl of C1 P2 space on
a same triangular grid. Therefore, from the two known C1 P2 elements, the Powell–Sabin element
and the Powell–Sabin–Heindl element, cf. [11, 27, 28], see also Figure 1(b)–(c), we can derive C0
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(a) (b) (c) (d)

Figure 1. A crisscross, a Powell–Sabin, a Powell–Sabin–Heindl and a type-2 grid.

divergence-free P1 spaces too. It is obvious that the crisscross-type grids are much more efficient
in computation than the Powell–Sabin and Clough–Tocher-type grids, cf. for example [29]. As we
found a local basis for divergence-free P1 vector space, we can easily find their anti-derivatives
to obtain a local basis for the C1 P2 space on the crisscross grid. We note that such a local basis
is not known previously. The method of representing a piecewise C1 polynomial basis without
using nodal derivatives was reported previously in [30]. More work on such C1 elements would be
performed elsewhere. However, we comment that extensive studies have been done on a similar
type of grids, the type-2 triangulation where the centre of each square is connected to both the
four vertices and the four mid-edge points (see Figure 1(d)), cf. [31–33], and its counterpart in
three-dimension, cf. [34–36].

There are six sections in the paper. In Section 2, we discuss the stability relation between
P1–P0 and Q1–P0. In Section 3, we analyse the approximation properties of the P1–P0 element
on the crisscross meshes of the unit square. We study the performance of the element on a
general mesh family in Section 4. In Section 5, we display a basis of divergence-free piecewise
linear functions. Finally in Section 6, we report some numerical results on the reduced stability
and approximability of the P1–P0 element. We also illustrate the efficiency of using the newly
discovered divergence-free basis in computation by a simple example.

2. STABILITIES OF P1–P0 AND Q1–P0 ELEMENTS

In this section, we shall study the relationship between P1–P0 and Q1–P0 finite elements. The �
under consideration could be a general polygonal domain. We denote a quadrilateral partition of
� by Qh and its corresponding crisscross-refinement by Th , which is obtained by dividing each
quadrilateral in Qh by its two diagonals.

For each triangle T ∈Th , let hT denote the diameter of T and �T the diameter of the circle
inscribed in T . A family of triangulations of � is said to be regular if there is a positive �
independent of h such that

�T

hT
�� (2)

We assume triangulations are regular in this paper.
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500 J. QIN AND S. ZHANG

Let Ŵ denote the unit square [0, 1] × [0, 1] with vertices ŵ1, ŵ2, ŵ3, and ŵ4 (counterclockwise
from the left-lower corner). For any quadrilateral W ∈Qh with the vertices w1, w2, w3, and w4

(counterclockwise), there exists exactly one bilinear mapping FW ∈ Q̂1(Ŵ )2 that maps Ŵ onto W
such that FW (ŵi ) =wi . Here,

Q̂k(Ŵ ) =
{ ∑
0�i, j�k

ai j x̂ i ŷ j |ai j ∈ R

}

On the quadrilateral W , we define finite element space

Qk(W ) ={v ◦ F−1
W , ∀v ∈ Qk(Ŵ )}

where k�1. On Qh , we define

M0
k (Qh) = {v ∈ H1(�)|v|W ∈ Qk(W ),∀W ∈Qh}

M−1
k (Qh) = {v ∈ L2(�)|v|W ∈ Qk(W ),∀W ∈Qh}

The finite element Q1–P0 and its associated spaces are defined as

Ṽh =M0
1(Qh) ∩H1(�)

P̃h = M−1
0 (Qh)

Ñh = {q ∈ P̃h |b(v, q)= 0, ∀v∈ Ṽh}
M̃h = L2-orthogonal complement of Ñh in P̃h

(3)

Let Pk(T ) denote the polynomials with degree less than or equal to k defined on each triangle
T ∈Th . On Th , we define

M0
k (Th) = {v ∈ H1(�)|v|T ∈ Pk(T ),∀T ∈Th}

M−1
k (Th) = {v ∈ L2(�)|v|T ∈ Pk(T ),∀T ∈Th}

For the P1–P0 element, we use the notations Vh , Ph , Nh , Mh , as defined by

Vh =M0
1(Th) ∩H1(�)

Ph = M−1
0 (Th)

Nh = {q ∈ Ph |b(v, q)= 0, ∀v∈Vh}
Mh = L2-orthogonal complement of Nh in Ph

(4)

It is obvious that P̃h ⊂ Ph .
We call a polygonal region U of Th (resp. Qh) a macroelement if it is formed by some triangles

ofTh (resp. quadrilaterals of Qh). For a macroelement U ofTh (resp. Qh), we define localizations
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Figure 2. Macroelement U and spurious pressure mode �U .

VU
h , P

U
h , NU

h , and MU
h (resp. ṼU

h , P̃
U
h , ÑU

h , and M̃U
h ) to U of the finite element spaces Vh , Ph ,

Nh , and Mh (resp. Ṽh , P̃h , Ñh , and M̃h) by just replacing � by U in (3) (resp. (4)).

Lemma 2.1
Let Qh be a quadrilateral partition of a polygonal domain �. If Th is the corresponding crisscross-
refinement for Qh , then

Ñh ⊂ Nh

Proof
We note a simple fact first. For any v∈Vh , there exists a w∈ Ṽh such that

b(v, q)= b(w, q) ∀q ∈ P̃h (5)

Similarly, for any w∈ Ṽh , there is v∈Vh such that (5) holds.
Since any function w∈ Ṽh is linear on all the edges of Qh , there exists a function v∈Vh such

that v − w vanishes on all the edges of Qh . Therefore, (5) follows by using the Green’s formula.
From (5), the lemma follows. �

In order to study the structure of Nh , we consider Qh as a macroelement partition of Th . For
any quadrilateral U ∈Qh , there is a one-dimensional space of spurious pressure modes, with their
support in U , associated with the singular vertex of U (the intersection of the two diagonals of
U , see Figure 2). For convenience, we denote the spurious pressure mode, shown in the second
picture of Figure 2, by �U (values of �U are shown in Figure 2, where a, b, c, and d are the
lengths of the four interior edges). A detailed calculation of �U can be found in [7].
Lemma 2.2
Let Th be the crisscross-refinement of Qh , then

Nh = Ñh + span{�U | for all quadrilaterals U ∈Qh}
Proof
Clearly, �U ∈ Nh for any U ∈Qh . Since NU

h contains only linear combinations of �U (the charac-
teristic function of U ) and �U for each U ∈Qh , any function q ∈ Nh must be in P̃h provided q is
orthogonal to all �U ’s. By (5), q ∈ Ñh . Hence, the lemma follows. �
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Corollary 2.1

Mh ∩ P̃h = M̃h

Theorem 2.1
For a polygonal domain �, let Qh be a quadrilateral partition of � and Th be the corresponding
crisscross-refinement. Assume Th is regular. Then,

C�h(Ṽh, M̃h)��h(Vh, Mh)�C−1�h(Ṽh, M̃h)

where C is independent of h.

Proof
Let Qh be a macroelement partition of Th . On each macroelement U ∈Qh , we have

dimVU
h = 2, dim PU

h = 4

dimMU
h = 2, dim NU

h = 2

Following the arguments of Theorem 4.3.1 in [7], we can bound the local inf–sup constants
�h(V

U
h , MU

h ) on all macroelements U in Qh by a positive number which is independent of h.
Applying the macroelement partition theorem (Theorem 3.2.1 in [7]), we know that the reduced
inf–sup constant �h(Vh, Mh) is determined by the stability ofVh × (Mh ∩ ∑

U∈Qh
NU
h ) =Vh × M̃h

(by the corollary). This implies that Vh × Mh has exactly the same stability as Vh × M̃h . If it is
shown that Vh × M̃h and Ṽh × M̃h have the same stability, then the theorem is proven.

We first show that

�h(Vh, Mh)�C−1�h(Ṽh, M̃h) (6)

For any q ∈ M̃h , there exists a function w∈ Ṽh such that

b(w, q) = ‖q‖20,�
‖w‖1,� � C

�h(Ṽh, M̃h)
‖q‖0,�

(7)

If we can construct a function v∈Vh such that

b(v, q) = ‖q‖20,�

‖v‖1,� � C

�h(Ṽh, M̃h)
‖q‖0,�

then (6) is proved.
Let Ih := (Ih, Ih): Ṽh → Vh be the interpolation operator such that Ihg and g agree at every

vertex in Th for any g∈ Ṽh . For any function g∈ Ṽh , the interpolation error g − Ihg vanishes at
all the edges of the quadrilateral partition Qh . We will show that there is a constant C independent

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:497–515
DOI: 10.1002/fld



STABILITY AND APPROXIMABILITY OF THE P1–P0 ELEMENT 503

of h such that

‖g − Ihg‖1,��C‖g‖1,� (8)

for any g∈ Ṽh . If this is the case, by taking v= Ihw, then

‖v‖1,��‖w − v‖1,� + ‖w‖1,��C‖w‖1,�
According to the arguments in the proof of Lemma 2.1 and (7), we have

b(v, q) = b(w, q)=‖q‖20,�

‖v‖1,� � C

�h(Ṽh, M̃h)
‖q‖0,�

This proves (6) with assumption (8).
Let U ∈Qh be a macroelement. If we need to show that

‖g − Ihg‖0,U �C‖g‖0,U (9)

|g − Ihg|1,U �C |g|1,U (10)

for any g ∈ Q1(U ), any U ∈Qh , and any h>0 with constant C independent of h. Let E�(Û )

denote the set of all the equivalence macroelements, see [1, 7, 25], of the unit square Û satisfying
the regularity condition (2). Obviously, translations and dilations of U do not affect (9) and (10).
Therefore, for simplicity, we assume that the length of the longest diagonals of each macroelement
in E�(Û ) is one unit, and that the intersection of the two diagonals of any macroelement in
E�(Û ) has coordinates (0, 0). For any macroelement U in E�(Û ), we denote the intersection
of its two diagonals by v5 and the other four vertices by v1, v2, v3, and v4, clockwise. Hence,
S = {(v1, v2, v3, v4, v5) | U ∈ E�(Û )} is a closed set in R10. Let g ∈ Q1(U ) be arbitrary and its
value at vi be gi for i = 1, 2, 3, 4. For convenience, we denote the vector (g1, g2, g3, g4)t by ḡ.
Since (Ihg)(vi ) = gi for i = 1, 2, 3, 4 and (Ihg)(v5) is determined by g1, g2, g3, and g4, we have

‖g − Ihg‖20,U = ḡtAU ḡ

‖g‖20,U = ḡtBU ḡ

|g − Ihg|21,U = ḡtCU ḡ

|g|21,U = ḡtDU ḡ

Here, BU is a symmetric positive definite and AU , CU , and DU are symmetric positive semi-
definite. Clearly, the entries of AU , BU , CU , and DU are continuous functions of (v1, . . . , v5).

Since S is a bounded closed set in R10, there exists a constant C1 independent of h such that

‖g − Ihg‖0,U�C1‖g‖0,U (11)

for any U ∈ E�(Û ).
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It is easy to see that only the constant functions make both sides of (10) zero. Hence, the matrix
DU always has exactly three positive eigenvalues which depend on (v1, v2, v3, v4, v5) continuously.
Since S is a bounded closed set in R10, the smallest non-zero eigenvalue of DU is bounded away
from zero by a positive number independent of h. Due to the same reason, the largest eigenvalue
of CU is bounded above by a constant independent of h. Therefore, there exists a constant C2
independent of h such that

|g − Ihg|1,U�C2|g|1,U (12)

for any U ∈ E�(Û ).
Combining (11) and (12), we obtain (9) and (10). Therefore, we have proven (6). Using similar

arguments, we can show that �̃h�C �̄h . �

Theorem 2.2
Let Qh be a quadrilateral partition of a polygonal domain� andTh be the corresponding crisscross-
refinement. If Ṽh × P̃h is stable, then Vh × Mh is stable. Moreover, if (uh, p̄h) ∈Vh × Mh and
(uh, ph) ∈Vh × Ph solve (1), then

‖u − uh‖1,� �Ch‖u‖2,�
‖p − p̄h‖0,� �Ch(‖u‖2,� + ‖p‖1,�)

(13)

Here, the constantC is independent of h, p̄h = ph/Nh , and we assume that (u, p) ∈ H̊2(�) × H1(�)

solves the Stokes equations on the continuous level.

Proof
Stability of Vh × Mh is a direct consequence of Theorem 2.1. It is known that M−1

0 (Qh)/R⊂ Mh
implies that the approximation properties of Mh are as good as those of Ph . Therefore, by the
stability theorem established in [14], (13) follows (the error estimate of velocity is decoupled from
‖p‖1,� because of div uh = 0). �

For the Q1–P0 element, one stable mesh family was identified in [25]. On the crisscross-
refinements of all these stable families, the P1–P0 element is reduced-stable and the numerical
solution is optimal.

The pressure p̄h ∈ Mh can be recovered from ph ∈ Ph by applying a simple postprocess quadri-
lateral by quadrilateral. That is, on each quadrilateral U ∈Qh ,

p̄h |U = ph |U −
∫
U ph�U∫
U �2U

�U

As a direct application of Lemma 2.2, Theorem 2.1, and the stability results of the element
Q1–P0 in [5, 15, 25], we get the following theorem.

Theorem 2.3
Let Qh , h = 1/n, be a square mesh of the unit square and Th be the corresponding crisscross-
refinement. Then

�h(Vh, Mh) =Ch, dim Nh = n2 + 2

However, the approximation properties of the numerical solution of the P1–P0 element on
the crisscross-refinement (the mesh is also called crisscross mesh) of the square mesh of the unit
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square cannot be answered directly by applying the stability theorem established in [14] since the
reduced inf–sup constant is Ch. This will be answered in the next section.

3. APPROXIMATION PROPERTIES ON CRISSCROSS MESHES

In this section, we show that the numerical solutions of (1) converge to the true solution of the
Stokes equations (with Dirichlet boundary condition) at a rate of h on the crisscross meshes of the
unit square. Moreover, we will display a way to recover the numerical solution for the pressure.
Since Vh × Mh is unstable, this means that Mh is still too large. Therefore, we need to remove
more modes from Mh while trying to preserve the approximation properties for the remaining
pressure space Sh . It is then necessary to define a new velocity space Wh ⊂Vh such that not only
is Wh × Sh stable but also the velocity from Wh × Sh is exactly the same as uh from Vh × Mh .
Of course, the space Wh should possess good approximation properties.

The crucial matter here is to determine the bad modes in Mh . Let h = 1/n and n = 4k for some
positive integer k, and let Th be the crisscross mesh of the unit square. For convenience, we
denote (�, �) the vertex in Th with coordinates (�h, �h), and ��+1/2,�+1/2 the spurious pressure
mode associated with the singular vertex (�, �) (see Figure 3). Let Q4h be a macroelement partition
of Th such that every U ∈Q4h has 16 h × h squares. Therefore, U consists of 64 triangles. From
Lemma 2.2, we know that NU

h is the space spanned by the functions �U (the characteristic function
with support U ), �U (the checkerboard mode with support U , shown in Figure 3), and �i+1/2, j+1/2,
where (i+1/2, j+1/2) is a singular vertex inU . Obviously, the �i+1/2, j+1/2’s are not in Mh . Since
the global checkerboard mode �� ∈ span{�U , ∀U ∈Q4h}, we need to remove span{�U , ∀U ∈Q4h}
from Mh .

Define

N̄h = span{1, �i+1/2, j+1/2, �U , 1�i, j�n − 1, ∀U ∈Q4h}
Sh = L2-orthogonal complement of N̄h in Ph

Wh = {v∈Vh |b(v, q) = 0, ∀q ∈ N̄h}
SUh = �U Sh

WU
h = {v∈Wh |support v⊂U }

1 -1 1 -1

1-11-1

1 -1 1 -1

1-11-1

-1

-1

11

Figure 3. ��+1/2,�+1/2 and �U .
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Theorem 3.1
Let Th be a crisscross mesh of the unit square. Assume (u, p) ∈ H̊2(�) × H1(�) is the true
solution of the Stokes equations and (ũh, p̃h) ∈Wh × Sh solves (1), then

‖u − ũh‖1,� �Ch‖u‖2,�
‖p − p̃h‖0,� �Ch(‖u‖2,� + ‖p‖1,�)

Proof
It is easy to verify that

Nh ⊂ N̄h, M0
1(T2h) ∩ H̊1(�) ⊂Wh and M−1

0 (Q4h) ⊂ Sh

Therefore, Wh × Sh has good approximation properties. It only remains to prove that Wh × Sh is
stable.

Define

ÑU
h ={q ∈ SUh |b(v, q) = 0, ∀v∈WU

h }

Then, Lemma 2.2 implies that ÑU
h contains only constant functions. Therefore, Wh × (Sh ∩

(
⋃

U∈Q4h
ÑU
h )) is stable by the fact that [M0

1(T2h) ∩ H̊1(�)] × M−1
0 (Q4h) is stable. Finally, by

using the macroelement partition theorem, see [1, 7, 25], we have that Wh × Sh is stable. �

Theorem 3.2
Let Th be the crisscross mesh of the unit square with h = 1/(4k) for some positive
integer k. If (u, p) ∈ H̊2(�) × H1(�) is the true solution of the Stokes equations, then the so-
lution (uh, ph) ∈Vh × Ph of (1) satisfies

‖u − uh‖1,� �Ch‖u‖2,�
ph = p̃h + N̄h

and the pressure can be recovered from ph by a postprocess.

Proof
Clearly, the solution (uh, ph) ∈Vh × Ph of

a(uh, v) + b(v, ph) = (f, v) ∀v∈Vh

b(uh, q) = 0 ∀q ∈ Ph

satisfies

a(uh, v) + b(v, ph) = (f, v) ∀v∈Wh

b(uh, q) = 0 ∀q ∈ Sh
(14)
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Since uh ∈Wh and ph = (ph/N̄h) + nh for some nh ∈ N̄h , (14) implies

a(uh, v) + b(v, ph/N̄h) = (f, v) ∀v∈Wh

b(uh, q) = 0 ∀q ∈ Sh

Since the solution of (1) in Wh × Sh is unique, we get

uh = ũh and ph/N̄h = p̃h

By Theorem 3.1, the velocity uh and recovered pressure p̃h have optimal rates of convergence. It
is simple to recover p̃h from ph since N̄h is known. �

4. APPROXIMATION PROPERTIES ON A GENERAL MESH FAMILY

The P1–P0 element is further analysed on a general mesh family in this section. On this family
of meshes, it is shown that the finite element solution for the velocity converges at an order h and
the pressure can be recovered by a simple postprocess.

The triangulation Th is formed in the following way. First, we partition the polygonal domain
� into quadrilaterals. This quadrilateral partition is denoted by Q4h . Secondly, each quadrilateral
in Q4h is divided into four sub-quadrilaterals by linking the intersection of its two diagonals to
the middle point of each edge, so Q2h is formed. Repeating the above process to all quadrilaterals
in Q2h , we have Qh . Finally, partitioning each quadrilateral in Qh into four triangles by its two
diagonals, we obtain the triangulation Th . The first figure in Figure 4 shows how to partition a
quadrilateral in Q4h into four quadrilaterals in Q2h . The second figure shows a macroelement in
Q4h with 64 triangles in Th .

We will show that on the triangulation Th , the numerical solution uh has an optimal rate of
convergence and a pressure with an optimal rate of convergence can be recovered from ph . The
measure to achieve this objective is quite similar to what we used for the crisscross mesh. We
first remove all possible ‘bad modes’ from Ph , and then consider the pressure in the remaining
pressure space. The key issue is to determine bad pressure modes in Ph . We know that spurious
pressure modes associated with each singular vertex must be removed from the pressure space
Ph . However, this is not enough to guarantee the stability according to our experience with the
crisscross mesh. Since the crisscross mesh is a special case of Th , we definitely need to remove
those pressure modes which may degenerate to local spurious modes. Based on this consideration,

Figure 4. Form Qh from Q4h .
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Figure 5. ‘Bad pressure mode’ over U2h .

we will remove all multiples of the mode (shown in Figure 5) on each macroelement in Q2h from
the pressure space Ph .

For convenience, we denote a quadrilateral in Qh by Uh , a quadrilateral in Q2h by U2h , and a
quadrilateral in Q4h by U4h . We also denote the mode shown in Figure 5 by �U2h . Let �Uh denote
the spurious pressure mode associated with the singular vertex in Uh ∈Qh . We can easily conclude
that ∫

T
�U2h = 0

for any T ∈T2h , any U2h ∈Q2h .
Define

N̄h = span{1, �Uh , �U2h , ∀Uh ∈Qh, ∀U2h ∈Q2h}
Sh = L2-orthogonal complement of N̄h in Ph

Wh = {v∈Vh |b(v, q) = 0, ∀q ∈ N̄h}
SU4h
h = �U4h Sh

WU4h
h = {v∈Wh |support v⊂U4h}

Theorem 4.1
Let Th be a regular triangulation defined above. If (u, p) ∈ H̊2(�) × H1(�) is the true solution
of the Stokes equations and (ũh, p̃h) ∈Wh × Sh solves (1), then

‖u − ũh‖1,� �Ch‖u‖2,�
‖p − p̃h‖0,� �Ch(‖u‖2,� + ‖p‖1,�)

Proof
It is expected that Nh ⊂ N̄h , if Th is a crisscross mesh. Since T

U4h
h has the special structure, we

can show that

M−1
0 (Q4h) ⊂ Sh and [M0

1(T2h) ∩ H̊1(�)] ⊂Wh
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Therefore, Wh × Sh has good approximation properties. If we can prove that Wh × Sh is stable,
then the proof is done.

Define

ÑU4h
h ={q ∈ SU4h

h |b(v, q)= 0, ∀v∈WU4h
h }

We need to show that ÑU4h
h contains only constant functions. If it does for any U4h ∈Q4h , then

Wh × (Sh ∩ (∪U4h ∈Q4h Ñ
U4h
h )) is stable by the fact that [M0

1(T2h) ∩ H̊1(�)]× M−1
0 (Q4h) is stable.

Therefore, by using the macroelement partition theorem we can prove that Wh × Sh is stable.
We show that dim ÑU4h

h = 1. Since �Uh ∈ N̄h , if q ∈ ÑU4h
h , then q is a constant on each Uh

in U4h . Hence, q must be a constant on each U2h in U4h since we already removed �U2h from
the pressure space. Therefore, q must be a constant on each of the four U2h in U4h . A simple
computation shows that q must be a constant on U4h . �

Theorem 4.2
Let Th be the triangulation defined at the beginning of this section, from a specially constructed
Qh , then the numerical solution (uh, ph) ∈Vh × Ph satisfies

‖u − uh‖1,��Ch‖u‖2,�
and ph/N̄h = p̃h . Here, we assume (u, p) ∈ H̊2(�) × H1(�) solves the Stokes equations.

Proof
Use similar arguments as in the proof of Theorem 3.2. �

5. A BASIS OF DIVERGENCE-FREE PIECEWISE LINEAR FUNCTIONS

In this section, we display a basis for Zh , the space of all divergence-free continuous piecewise
linear polynomials on the crisscross mesh Th . All the basis functions have a very small local
support and the space Zh has optimal approximation properties.

Let the domain � be the unit square and Qh , h = 1/n a partition of � which contains n × n
equal small squares. The triangulation Th is the crisscross-refinement of Qh .

Define

Vh =M0
1(Th) ∩ H̊1(�)

Zh = {v∈Vh | div v= 0}

A simple calculation shows that

dimVh = 4n2 − 4n + 2

In order to study Zh , we define a ‘pressure’ space Ph as

Ph = M−1
0 (Th)

The analysis of the properties of Zh can be carried out using the frame work of the analy-
sis of the P1–P0 finite element for the Stokes equations with Dirichlet boundary conditions.
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Figure 6. Macroelement U.

Since divVh ⊂ Ph , we have

Zh ={v∈Vh | div v= 0} = {v∈Vh |b(v, q)= 0,∀q ∈ Ph}
Lemma 5.1
On the crisscross triangulation Th with h = 1/n,

dimZh = (n − 2)2

Proof
Since dim Ph = 4n2 and dim Nh = n2 + 2 (see Theorem 2.3), the lemma holds. �

In order to find a basis for Zh , we first consider a small macroelement U with size 3h × 3h
(see Figure 6).

We denote the interior vertices of U by 1, 2, . . . , 13, as shown in Figure 6, and denote the nodal
basis functions by �1,�2, . . . , �13 accordingly. Let V

U
h denote the subspace of Vh such that all the

functions in VU
h have supports contained in U . We look for functions v= ∑13

i=1(ui , vi )�i ∈VU
h

such that div v= 0 in U . Namely, we need to solve a system of 36 linear equations in 26 unknowns.
Since dimZU

h = 1, we know that this system has a one-dimensional solution space. After some
algebraic computations, we find that the solution space is

ZU
h = span{zU }

where zU = (	, 
) and

	 = �2 − �8 + �10 + �11 − �12 − �13


 = −�4 + �6 − �10 + �11 − �12 + �13

See Figure 7 for graphs of 	 and 
. Since there are exactly (n − 2)2 different macroelements with
size 3h × 3h in Th—the set of all these macroelements is named by Uh—we find a basis for Zh .
By the results of Section 4, we have

Theorem 5.1
Let Th be the crisscross mesh of the unit square with h = 1/n. Then

{zU |∀U ∈Uh}
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Figure 7. The shape of the two components of zU .

Figure 8. One macro-quadrilateral element and its crisscross-refinement.

form a basis of Zh . Furthermore, if u∈ H̊2(�) and divu= 0, then

inf
v∈Zh

‖u − v‖1,��Ch‖u‖2,�

6. NUMERICAL TESTS

In this section, we report some results of numerical experiments. First, we calculate the reduced
inf–sup constant of the elementP1–P0 on a reduced-stable family, which is a crisscross-refinement
of a stable quadrilateral family for the Q1–P0 element, see [25]. We consider problem (1) when
� is the unit square. The unit square is first partitioned into n × n small squares, 2h = 1/n. The
partition is denoted by Q2h . The Qh is then defined by partitioning each square of Q2h into five
quadrilaterals (see Figure 8). Finally, the triangulation Th is the crisscross-refinement of Qh as
depicted in Figure 8.

By the work of Stenberg [25], we know the Q1–P0 element is stable on Qh . Therefore, P1–P0
is reduced-stable on Th , and dim Nh = 5n2 + 1 (Lemma 2.2). Although there is a relatively large
space of spurious pressure modes involved, all these modes can be filter out from the numerical
approximation ph quite easily, quadrilateral by quadrilateral. Of course, the velocity approximation
uh is of the optimal order, and no recovery is needed.

The reduced inf–sup constant �h(Vh, Nh) and dim Nh for 1/h = 2n = 2, 4, 6, . . . , 16 are reported
in Table I. The reduced inf–sup constant is clearly bounded below, and the bound is a relatively
large number.
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Table I. Inf–sup constants for P1–P0.

h �h(Vh , Mh) dim Nh

1/2 0.31808 6
1/4 0.31314 21
1/6 0.31378 46
1/8 0.31481 81
1/10 0.31615 126
1/13 0.31653 181
1/14 0.31660 246
1/16 0.31693 321

Figure 9. The first component of uh on level 4 grid.

Finally, we use the newly discovered divergence-free P1 elements on the crisscross grids
(cf. Figure 6) to solve the following model Stokes equations:

a(u, v) − b(v, p) = (f, v) ∀v∈V

b(uh, q) = 0 ∀q ∈ P

defined on the unit square �= [0, 1]2, where

f = − � curl g + ∇gxx =
(−gyxx − gyyy − gxxx

gxxx + gxyy − gyxx

)
(15)

with g= 64(x − x2)2(y − y2)2. The exact solution is

u= curl g

We depict the first component of u (uh in fact) in Figure 9.
Thanks to the newly discovered divergence-free basis, problem (15) is reduced to, find uh ∈Zh

such that

a(uh, v) = (f, v) ∀v∈Zh (16)
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Table II. Convergence of divergence-free P1 finite elements.

Level h # elements dimVh + dim Ph dimZh ‖u − uh‖∞
3 1/4 64 146 4 0.21398925
4 1/8 256 546 36 0.07262499
5 1/16 1024 2114 196 0.02063174
6 1/32 4096 8322 900 0.00549276

Figure 10. The first component of the error u − uh .

where Zh is the divergence-free P1 finite element space defined in Section 5. We note that,
comparing to the traditional non-positive definite finite element systems, we have a positive definite
matrix for the discrete linear system (16). Further, the number of unknowns in the finite element
equations (16) is much less than one-eighth of that in the standard mixed finite element equations,
see the fourth and the fifth columns of Table II. From the fifth column of Table II, it is apparent
that the divergence-free finite element solution converges at the optimal order, O(h2). At the end,
in Figure 10, we plot one component of error (u − uh) on the grid level 4. We can see that the
nodal error is much larger at the crisscross points (the centre of each square), compared with that
at the square vertices.

The auxiliary variable, pressure ph , may not be wanted as it is introduced as a Lagrange
multiplier. If we do want to further compute ph after obtaining uh , it seems not so obvious. In the
P1–P0 finite element pair Vh − Mh , the reduced pressure space Mh is precisely the divergence
of Vh . One method might be, after uh ∈Zh is found, solving a (divwh, div vh) equation by an
iterative method such as the conjugate gradient method, where divwh = ph . However, it is painful
and computational costing to project wh into the orthogonal space of the divergence-free subspace
Zh at each step of iteration. So we use a classic method, the iterative penalty method [37], for
solving the discrete Stokes equations to obtain uh and ph simultaneously as follows.

Let u0 = 0 and define the iteration for n = 1, 2, . . . by

a(unh, v) + r(divun, div v) = (f, v) +
(
div

n−1∑
i=0

ruih, div v

)
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Table III. Iterative penalty method for P1–P0 finite elements.

Level IPM # +1 ‖u − uh‖∞ ‖p − ph‖∞
3 6 0.2140078967 2.7175115700
4 5 0.0726272472 1.7420730033
5 5 0.0206304055 0.9671728827
6 5 0.0054924298 0.4985045418
7 4 0.0014173141 0.2535286586

When reaching the size of truncation error (or the computer accuracy), i.e.

(divuN
h , divuN )�Ch2 
 ‖u − uh‖2H1

the iteration stops. At the end, we simply compute

ph = div
N−1∑
i=0

ruih

The numbers of iterative penalty iterations and the results are reported in Table III, where the data
match those obtained by using the divergence-free basis.
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18. Johnson C, Pitkäranta J. Analysis of some mixed finite element methods related to reduced integration.Mathematics

of Computation 1982; 158:375–400.
19. Malkus DS. Eigenproblems associated with the discrete LBB-condition for incompressible finite elements.

International Journal of Engineering Science 1981; 19:1299–1310.
20. Mansfield L. On finite element subspaces on quadrilateral and hexahedral meshes for incompressible viscous

flow problems. Numerische Mathematik 1984; 45:165–172.
21. Oden JT, Jacquotte O. Stability of some mixed finite element methods for Stokesian flows. Computer Methods

in Applied Mechanics and Engineering 1984; 43:231–247.
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